Measuring Method of Stray Inductance for Inverter Circuit

In evaluating the characteristics of IGBTs, stray inductance of the test circuit is a major factor to be considered. This document presents the measurement method of the stray inductance (inclusive of the module's own internal inductance). In evaluation of IGBT, one phase circuit of inverter, as shown in Fig. 1, is generally utilized. The circuit is basically a half-bridge topology, composed of two series connected IGBT modules, a power supply (PS) and an inductive load (L), where the total stray inductance of the main circuit is symbolized as Ls.



Fig.1. One phase circuit of inverter

The operational timing pattern of the circuit for measuring Ls is given in Fig.2 (a). The voltage and current waveforms of the pattern are shown in Fig.2 (b) and (c) respectively. In accordance with the pattern, IGBT B₂, i.e. Module 2, is operated. From t = 0 to t₁ the state of B₂ is ON and current Ic

flows through load L and IGBT B₂, as shown in Fig.3. In this case, the load current I_L which flows through inductive load L has the same value as the collector current I_C of B₂ where I_C increases with time.

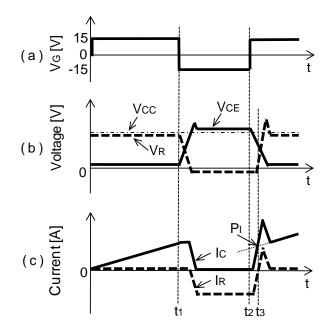


Fig.2. Operation pattern for measuring Ls

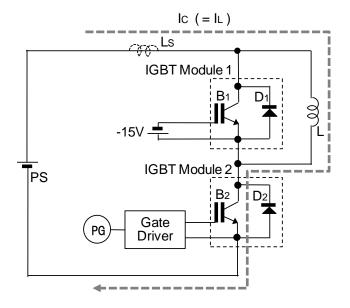


Fig.3. Current flow in the ON-state of B2

After t₁, B₂ shits to OFF-state through a transient period. During the OFF-state of B₂, the current I_C is blocked but the load current I_L is maintained as a circulating current through diode D₁ as shown in Fig.4. After t₂, B₂ turns ON during a transient period.

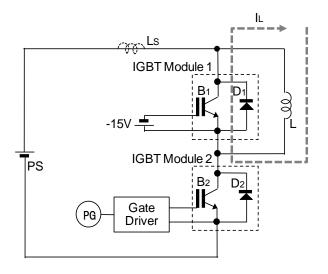


Fig.4. Current flow in the OFF-state of B2

Just after t_1 and t_2 , transient state, where both I_C and I_L currents flow, as shown in Fig.5. The reverse current (IR) of D_1 is the difference between I_C and I_L , that is to say $I_R=(I_C-I_L)$.

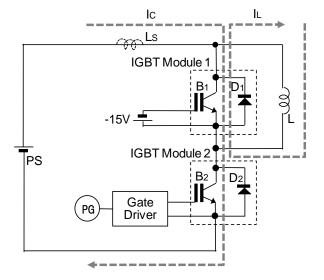


Fig.5. Current flow during transient period

Focusing on the transient period following t2, Ic flows through D1 and B2 as shown in Fig.6. During this state, Ls is calculated by the following equation (1).

$$L_S = (V_{CC} - V_R - V_{CE}) \div \frac{dI_C}{dt}$$
 ----- (1)

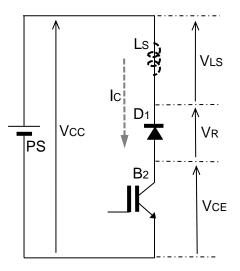


Fig.6. Simplified circuit for transient period

If V_{CE} and dI_{C}/dt are detected at a time point where V_{R} becomes zero, that is, $I_{R} = 0$, the following equation (2) can be derived from equation (1).

$$L_{S} = (V_{CC} - V_{CE}) \div \frac{dI_{C}}{dt}$$
 ----- (2)

Therefore, Ls can be specified using the measured voltage VcE and current Ic as arranged in Fig.1. The voltage meter must be connected to sense terminals of IGBT module in order to accurately measure the value of Ls including the internal inductance of the module. The time point symbolized as by t₃ in Fig.2 (c) can be detected through the intersection point P₁ by checking the waveform of Ic.